14 research outputs found

    Predictive model for the degradation state of a hydraulic system with dimensionality reduction

    Get PDF
    In recent years, the optimization in the use of resources has a key role in achieving a bigger marginality, reducing the operative costs. Due to the advances in the data science field, even the maintenance context is living important changes. The predictive maintenance and the condition-based maintenance can overcome the classic traditional maintenance methods, like the time-based maintenance or the corrective maintenance, with respect to the first intervention, reducing the costs for unscheduled maintenance, manpower, or loss of production and extending the useful life of the components. Based on these presuppositions, the paper proposes the development of a predictive model for the degradation state of the components of a complex hydraulic system, with some tests and some suggestions about the dimensionality reduction. The system has four known types of breakdown, with different degrees of severity; moreover, a fifth parameter represents whether the cycle has reached stable conditions or not

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    Digital twin reference model development to prevent operators' risk in process plants

    Get PDF
    In the literature, many applications of Digital Twin methodologies in the manufacturing, construction and oil and gas sectors have been proposed, but there is still no reference model specifically developed for risk control and prevention. In this context, this work develops a Digital Twin reference model in order to define conceptual guidelines to support the implementation of Digital Twin for risk prediction and prevention. The reference model proposed in this paper is made up of four main layers (Process industry physical space, Communication system, Digital Twin and User space), while the implementation steps of the reference model have been divided into five phases (Development of the risk assessment plan, Development of the communication and control system, Development of Digital Twin tools, Tools integration in a Digital Twin perspective and models and Platform validation). During the design and implementation phases of a Digital Twin, different criticalities must be taken into consideration concerning the need for deterministic transactions, a large number of pervasive devices, and standardization issues. Practical implications of the proposed reference model regard the possibility to detect, identify and develop corrective actions that can affect the safety of operators, the reduction of maintenance and operating costs, and more general improvements of the company business by intervening both in strictly technological and organizational terms

    Clustering Application for Condition-Based Maintenance in Time-Varying Processes: A Review Using Latent Dirichlet Allocation

    No full text
    In the field of industrial process monitoring, scholars and practitioners are increasing interest in time-varying processes, where different phases are implemented within an unknown time frame. The measurement of process parameters could inform about the health state of the production assets, or products, but only if the measured parameters are coupled with the specific phase identification. A combination of values could be common for one phase and uncommon for another phase; thus, the same combination of values shows a high or low probability depending on the specific phase. The automatic identification of the production phase usually relies on clustering techniques. This is largely due to the difficulty of finding training fault data for supervised models. With these two considerations in mind, this contribution proposes the Latent Dirichlet Allocation as a natural language-processing technique for reviewing the topic of clustering applied in time-varying contexts, in the maintenance field. Thus, the paper presents this innovative methodology to analyze this specific research fields, presenting the step-by-step application and its results, with an overview of the theme

    Fault Diagnosis of a Granulator Operating under Time-Varying Conditions Using Canonical Variate Analysis

    No full text
    Granulators play a key role in many pharmaceutical processes because they are involved in the production of tablets and capsule dosage forms. Considering the characteristics of the production processes in which a granulator is involved, proper maintenance of the latter is relevant for plant safety. During the operational phase, there is a high risk of explosion, pollution, and contamination. The nature of this process also requires an in-depth examination of the time-dependence of the process variables. This study proposes the application of canonical variate analysis (CVA) to perform fault detection in a granulation process that operates under time-varying conditions. Beyond this, a different approach to the management of process non-linearities is proposed. The novelty of the study is in the application of CVA in this kind of process, because it is possible to state that the actual literature on the theme shows some limitations of CVA in such processes. The aim was to increase the applicability of CVA in variable contexts, with simple management of non-linearities. The results, considering process data from a pharmaceutical granulator, showed that the proposed approach could detect faults and manage non-linearities, exhibiting future scenarios for more performing and automatic monitoring techniques of time-varying processes

    Fault Detection, Diagnosis, and Prognosis of a Process Operating under Time-Varying Conditions

    No full text
    In the industrial panorama, many processes operate under time-varying conditions. Adapting high-performance diagnostic techniques under these relatively more complex situations is urgently needed to mitigate the risk of false alarms. Attention is being paid to fault anticipation, requiring an in-depth study of prediction techniques. Predicting remaining life before the occurrence of faults allows for a comprehensive maintenance management protocol and facilitates the wear management of the machine, avoiding faults that could permanently compromise the integrity of such machinery. This study focuses on canonical variate analysis for fault detection in processes operating under time-varying conditions and on its contribution to the diagnostic and prognostic analysis, the latter of which was performed with machine learning techniques. The approach was validated on actual datasets from a granulator operating in the pharmaceutical sector

    Clustering Application for Condition-Based Maintenance in Time-Varying Processes: A Review Using Latent Dirichlet Allocation

    No full text
    In the field of industrial process monitoring, scholars and practitioners are increasing interest in time-varying processes, where different phases are implemented within an unknown time frame. The measurement of process parameters could inform about the health state of the production assets, or products, but only if the measured parameters are coupled with the specific phase identification. A combination of values could be common for one phase and uncommon for another phase; thus, the same combination of values shows a high or low probability depending on the specific phase. The automatic identification of the production phase usually relies on clustering techniques. This is largely due to the difficulty of finding training fault data for supervised models. With these two considerations in mind, this contribution proposes the Latent Dirichlet Allocation as a natural language-processing technique for reviewing the topic of clustering applied in time-varying contexts, in the maintenance field. Thus, the paper presents this innovative methodology to analyze this specific research fields, presenting the step-by-step application and its results, with an overview of the theme

    Fault Detection, Diagnosis, and Prognosis of a Process Operating under Time-Varying Conditions

    No full text
    In the industrial panorama, many processes operate under time-varying conditions. Adapting high-performance diagnostic techniques under these relatively more complex situations is urgently needed to mitigate the risk of false alarms. Attention is being paid to fault anticipation, requiring an in-depth study of prediction techniques. Predicting remaining life before the occurrence of faults allows for a comprehensive maintenance management protocol and facilitates the wear management of the machine, avoiding faults that could permanently compromise the integrity of such machinery. This study focuses on canonical variate analysis for fault detection in processes operating under time-varying conditions and on its contribution to the diagnostic and prognostic analysis, the latter of which was performed with machine learning techniques. The approach was validated on actual datasets from a granulator operating in the pharmaceutical sector

    Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities

    No full text
    Anomaly detection is a crucial aspect for both safety and efficiency of modern process industries. This paper proposes a two-steps methodology for anomaly detection in industrial processes, adopting machine learning classification algorithms. Starting from a real-time collection of process data, the first step identifies the ongoing process phase, the second step classifies the input data as “Expected”, “Warning”, or “Critical”. The proposed methodology is extremely relevant where machines carry out several operations without the evidence of production phases. In this context, the difficulty of attributing the real-time measurements to a specific production phase affects the success of the condition monitoring. The paper proposes the comparison of the anomaly detection step with and without the process phase identification step, validating its absolute necessity. The methodology applies the decision forests algorithm, as a well-known anomaly detector from industrial data, and decision jungle algorithm, never tested before in industrial applications. A real case study in the pharmaceutical industry validates the proposed anomaly detection methodology, using a 10 months database of 16 process parameters from a granulation process
    corecore